
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

1 Instructor: Daniel Llamocca

Notes - Unit 9

TIMER FUNCTIONS

HHCCSS1122DD:: EENNHHAANNCCEEDD CCAAPPTTUURREE TTIIMMEERR

MAIN FUNCTIONS
 Input Capture
 Output Compare

 Pulse accumulator
 Modulus Down Counter

FEATURES
 8 channels of Input Capture/Output Capture (TC0,TC1,…,TC7): a channel can only be configured as either Input Capture

or Output Compare. Each channel can generate an interrupt.
 16-bit counter (TCNT): Base Timer for all Channels.

 Pulse Accumulators:
 Four 8-bit Pulse Accumulators (PAC3, PAC2, PAC1, PAC0), or

 Two 16-bit Pulse Accumulator (PACA=|PAC3|PAC2|, PACB=|PAC1|PAC0|)

 Modulus Down Counter with pre-scaler (1,4,8, or 16)

 𝑇𝑖𝑚𝑒𝑟 𝑐𝑙𝑜𝑐𝑘 =
𝐸−𝑐𝑙𝑜𝑐𝑘 (𝑏𝑢𝑠 𝑠𝑝𝑒𝑒𝑑)

𝑃𝑟𝑒−𝑠𝑐𝑎𝑙𝑒 𝑓𝑐𝑡𝑜𝑟
. The pre-scaler can be 1, 2, 4, 8, 16, 32, 64, 128.

 I/O Pins: PORT T: PT7-PT0. PT7 is the Pulse accumulator input pin when used as a Pulse accumulator input. PT3-PT0

can also be used as the pulse accumulator input for PAC3-PAC0. PT7 can also be used for PACA, PT0 for PACB.

 Interrupts:

 Each Input Capture/Output Compare Channel can generate an Interrupt (TC0 - TC7 Interrupt):

- $FFEE: Enhanced Capture Timer channel 0

- $FFEC: Enhanced Capture Timer channel 1

- $FFEA: Enhanced Capture Timer channel 2

- $FFE8: Enhanced Capture Timer channel 3

- $FFE6: Enhanced Capture Timer channel 4

- $FFE4: Enhanced Capture Timer channel 5

- $FFE2: Enhanced Capture Timer channel 6

- $FFE0: Enhanced Capture Timer channel 7

 Enhanced Capture Timer Overflow (TOF) Interrupt:
- $FFDE: Enhanced Capture Timer Overflow

 Pulse Accumulator Overflow Interrupts: PACA, PACB

- $FFDC: Pulse accumulator A overflow

- $FFC8: Pulse accumulator B overflow

 Pulse accumulator input Interrupt (PT7 pin)

- $FFDA: Pulse accumulator input edge Interrupt

 Modulus Down Counter Interrupt:
- $FFCA: Modulus Down Counter Underflow.

TIMER COUNTER REGISTER (TCNT)

 TCNT ($0044:$0045): Read two bytes at once (e.g.: ldd TCNT), because TCNT doesn’t stop during access operation.

 TCNT Configuration: TSCR1, TSCR2, TLFG1, TFLG2

 TSCR1:

- Bit 7 (TEN): ‘0’ to disable timer, ‘1’ to allow normal functioning.
- Bit 4 (TFFCA):

 1: A read from Input Capture (or write to Output Compare) channel clears the CnF flag on TLFG1. Also, any

access to TCNT clears the TOF flag.

 0: A specific CnF bit in TFLG1 can only be cleared by writing a ‘1’ to it. Also, TOF can only be cleared by

writing a ‘1’ to it.

 TLFG1: When a selected edge (see TCTL3, TCLT4) arrives at the input-capture pin, the corresponding flag Channel

‘n’ Flag CnF (n=0,1,…,7) is set to ‘1’.

 TLFG2: Only bit 7 (TOF) is implemented. When TCNT rolls over from $FFFF to $0000, TOF is set to 1. This flag can

be cleared by writing a ‘1’ to TOF.

 TSCR2:

- Bit 7 (TOI): Interrupt enable for TOF. ‘1’ to activate interrupt when TOF=1, ‘0’ to disable interrupt.
- Bit 3 (TCRE): Timer counter reset enable. ‘0’: Inhibits counter reset. ‘1’: Counter reset by a successful Output-

Compare 7. If TC7=$0000 then TCNT=$0000 indefinitely; if TC7=$FFFF, TOF is never 1 when TCNT rolls from

$FFFF to $0000.

- Bits 2 to 0: |PR2|PR1|PR0|: E-clock Pre-scale factor = 24×𝑃𝑅2+2×𝑃𝑅1+𝑃𝑅0.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

2 Instructor: Daniel Llamocca

IINNPPUUTT CCAAPPTTUURREE

8 Input Capture Channels. Each Channel includes:

 A 16-bit input Capture Register TCn, n = 0 7

 Input pin PTn

 Interrupt generation circuit.

APPLICATIONS:
 Period measurement
 Pulse-width measurement
 Duty cycle measurement
 Phase difference measurement between 2 signals with the same frequency.
 Recording of arrival time for several events. The number of events is limited by the number of Input Capture Channels.
 Interrupt generator: All input capture pins PT0-PT7 can serve as edge sensitive interrupt sources.

RELEVANT REGISTERS:

 Counter configuration: TSCR1, TSCR2, TFLG1, TFLG2.

 TIOS: Selects whether a pin is an Input Capture or Output Compare. 0 for Input Capture, 1 for Output Compare

 TIE: Timer Interrupt Enable Register. An input-capture channel can generate an interrupt request on the arrival of a

selected edge if it is enabled by the corresponding TIE bit. 1 to enable (Local Enable), 0 to disable.
 Timer Control Registers: TCTL3, TCTL4 (see Figure 8.6 in textbook). These registers specify what signal edge to

capture. The selection of a channel edge is controlled by 2 bits: EDGnB EDGnA:

- EDGnB EDGnA = 00 capture disabled on channel ‘n’.

- EDGnB EDGnA = 01 Rising edge on channel ‘n’.

- EDGnB EDGnA = 10 Falling edge on channel ‘n’.

- EDGnB EDGnA = 11 Both edges on channel ‘n’

When EDGnB EDGnA is not 00, the associated pin PTn becomes an input tied to ICn, regardless of the state of DDRT.

Example: Period measurement on PT0.
 Assumption: period is shorter than 80 ms.
 We need to make sure that the count from 0 𝑡𝑜 216 − 1 lasts at least 160 ms. If we set the Prescale factor to 64, then:

𝑇𝑖𝑚𝑒𝑟 𝑐𝑙𝑜𝑐𝑘 =
24 𝑀𝐻𝑧

64
= 0.375 𝑀ℎ𝑧 → 𝑃𝑒𝑟𝑖𝑜𝑑 = 2.67 𝑢𝑠. Thus, our unit of measurement is 2.67 us. The smallest period we

can measure is 2.67 us.

 A full count lasts 216 cycles, which is
1

0.375×106
× 216 = 174.7626 𝑚𝑠.

 Process:

1. Enable Input Capture on Channel 0: TIOS(0)=0 TIOS = 0x00

2. Select rising edge on Input Capture Channel 0: TCTL4(1..0) = 01 TCTL4 = 0x01

3. Set pre-scaler to 64. TSCR2=0x06 (also TOF interrupt inhibited)

4. Enable timer counter (starts from 0). Enable fast clear for TOF and C0F. TSCR1 = 0x90

5. Clear C0F flag (just in case): TFLG1(0) = 1 TFLG1 = 0x01

6. Wait until TFLG1(0) = 1 (we could have used an interrupt for this as well)

7. edge1 = TC0 (16-bit Input Capture Channel 0 Register). On the rising edge, TC0 gets the counter value.

8. Clear C0F flag (this is done by reading TC0 already)
9. Wait until TLFG(0) = 1

10. edge2 = TC0

11. Period = edge2-edge1. Notice that edge2 is always greater or equal than edge1.

C Code: unit9a.c

Periodic signal

edge1 edge2
Period

0 216-1TCNT (16 bits)

TNCT
COUNTER

Input Capture
Register n

Timer
clock TCNT

load only on
event arrival
PTn TCn

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

3 Instructor: Daniel Llamocca

Example: Pulse width measurement on PT0.
 Unlike the previous example, here we will consider the fact that the width of the pulse might be longer than 216 cycles.

The following procedure will also apply for period measurement when the period is longer than 216 cycles.

 We know that by using the pre-scale factor of 64, the unit of measurement is 2.67 us. If we want to accurately measure
pulses as small as 1 us (for example), we need to use a pre-scale of 16, this results in:

𝑇𝑖𝑚𝑒𝑟 𝑐𝑙𝑜𝑐𝑘 =
24 𝑀𝐻𝑧

16
= 1.5 𝑀ℎ𝑧 → 𝑃𝑒𝑟𝑖𝑜𝑑 = 0.67 𝑢𝑠. Thus, our unit of measurement is 0.67 us. The smallest pulse width

we can measure is 0.67 us. A full count then would last
1

1.5×106 × 216 = 43.6906 𝑚𝑠 = 216 𝑐𝑦𝑐𝑙𝑒𝑠.

 The pulse can be longer than 216 cycles (or it can be shorter than 216 but it includes a timer overflow). So, we need to

keep track of the number of times the counter (TCNT) overflows. A TOF Interrupt can take care of this (the ISR will count

the number of instances TOF generated an interrupt). Each overflow (𝑜𝑣𝑐𝑛𝑡 variable) adds 216 cycles to the pulse width.

𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ = (𝑜𝑣𝑐𝑛𝑡 − 1) × 216 + 𝑡2 + (216 − 𝑡1) = (𝑜𝑣𝑐𝑛𝑡) × 216 + (𝑡2 − 𝑡1)

 If we store the Pulse Width variable as a 32-bit number, then the maximum pulse width we can detect is 232𝑐𝑦𝑐𝑙𝑒𝑠 =

1

1.5×106 × 232 = 2863.311 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ≈ 47 𝑚𝑖𝑛𝑠.

Computer Arithmetic issue when implementing the formula:
 This formula works well for 𝑡2 ≥ 𝑡1.

 For 𝑡2 < 𝑡1, there is a problem due to the use of 16-bit integer arithmetic:

Here, the difference 𝑡2 − 𝑡1 is negative. If we are using unsigned numbers with 16 bits, the result will be also a 16-bit
unsigned number, which will be: (216 + 𝑡2) − 𝑡1 since a borrow out is assumed. So, for the pulse width formula to be

correct, we need to get rid of the 216 extra factor, hence:
𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ = (𝑜𝑣𝑐𝑛𝑡 − 1) × 216 + (𝑡2 − 𝑡1), 𝑤ℎ𝑒𝑛 𝑡2 < 𝑡1

- Another solution is to convert 𝑡2 and 𝑡1 to signed long integers (32 bits). This will allow to use the general formula

without problems. However, it will restrict the maximum possible detectable pulse width to 231 cycles.

- Another solution is to do 𝑡1 − 𝑡2 instead, and then change the formula to: 𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ = (𝑜𝑣𝑐𝑛𝑡) × 216 − (𝑡1 − 𝑡2). This

requires slightly more processing.

 Process:

1. Enable Input Capture on Channel 0: TIOS(0)=0 TIOS = 0x00

2. Select rising edge on Input Capture Channel 0: TCTL4(1..0) = 01 TCTL4 = 0x01

3. Set pre-scaler to 16. TSCR2=0x04

4. Enable timer counter (starts from 0) TSCR1 = 0x80

5. Clear C0F flag: TFLG1(0) = 1 TFLG1 = 0x01

6. Wait until TFLG1(0) = 1

7. Here we enable the TOF Interrupt:

- Clear TOF: TFLG2 = 0x80, write ‘1’ on TOF to clear it.

- Local Enable for TOF: TOI=1 TSCR2 = TSCR2|0x80.

- Global Enable: asm(“cli”);

8. edge1 = TC0 (16-bit Input Capture Channel 0 Register). On the rising edge, TC0 gets the counter value.

9. Select falling edge on Input Capture Channel 0: TCTL4(1..0) = 10 TCTL4 = 0x02

10. Clear C0F flag: TFLG1(0) = 1 TFLG1 = 0x01

11. Wait until TLFG1(0) = 1

12. edge2 = TC0

13. diff = edge2-edge1.
14. If edge2 < edge1 then overflow = overflow -1
15. 𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ = 𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 × 216 + 𝑑𝑖𝑓𝑓

 Interrupt Service Routine: The TOF interrupt was enabled on Step 7. The global variable overflow is initialized with 0, and

every time the TOF interrupt arrives, the ISR clears the TOF flag and increments the count on overflow.

C Code: unit9b.c

Pulse

t1

0 2
1
6
-
1

TCNT (16 bits)

t2

0 2
1
6
-
1

0 2
1
6
-
1 ovcnt=3

216-t1 t2

216*(ovcnt-1)

ovcnt=2ovcnt=1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

4 Instructor: Daniel Llamocca

OOUUTTPPUUTT CCOOMMPPAARREE

8 Output Capture Channels (OCs). Each Channel includes:

 A 16-bit Compare Register TCn, n = 0 7

 Output pin PTn

 Interrupt request circuit.
 A forced-compared function (CFORCn)

COMMON OPERATION:
 The user makes a copy of the current contents of TCNT

 Add to this copy a value that can generate a desired delay
 Stores the sum into an output-compare register (TCn), n=0..7

 The comparator compares TCNT and that TCn at every clock

cycle. If they are equal:

- A specified action is triggered on the PTn pin (to high, to

low, toggle).

- The associated flag in TFLG1 is set to 1.

- An interrupt requested is generated (if enabled).

APPLICATIONS:
 Single pulse generation

 Square wave generation

 Delay generation

 Event counting: Count number of events that occur during and interval.

RELEVANT REGISTERS:

 Counter configuration: TSCR1, TSCR2, TFLG1, TFLG2.

 Timer Control Registers: TCTL1, TCTL2 (see Figure 8.18 in textbook). These registers specify the action to take on the

output compare pin: to high, to low, toggle. The selection is controlled by 2 bits: OMn OLn:

- OMn OLn = 00 No action (timer disconnected from output pin).

- OMn OLn = 01 Toggle PTn pin.

- OMn OLn = 10 Clear PTn pin to 0.

- OMn OLn = 11 Set PTn pin to 1.

- When OMn OLn is not 00, the associated pin PTn becomes an output tied to OCn, regardless of the state of DDRT.

 TIOS: Selects whether a pin is an Input Capture or Output Compare. 0 for Input Capture, 1 for Output Compare

 TIE: Timer Interrupt Enable Register. An Output Compare channel can request an interrupt when a comparison is

successful. ‘1’ to enable (Local Enable), ‘0’ to disable.
 Reset TCNT: The OC7 channel can reset TCNT when the TC7=TCNT. This is enabled by bit 3 (TCRE) of TSCR2 register.

Example: Generate an active high 1-kHz digital waveform with a 30% duty cycle from the PT5 pin.
 1KHz frequency amounts to a period of 1 ms. 30% duty cycle means that the signal is ‘1’ for 300us and ‘0’ for 700 us.

 With a pre-scale factor of 8, we have: 𝑇𝑖𝑚𝑒𝑟 𝑐𝑙𝑜𝑐𝑘 =
24 𝑀𝐻𝑧

8
= 3 𝑀ℎ𝑧 → 𝑃𝑒𝑟𝑖𝑜𝑑 = 0.33 𝑢𝑠 =

1

3
𝑢𝑠. Then, we need to keep

the signal high for HCYCLES = 900 cycles and low for LCYCLES = 2100 cycles.
 Wave generation: Signal set to high at the beginning, and then we add HCYCLES to TC5. When the comparison is

successful, an interrupt is triggered. The ISR will add LCYCLES to TC5. When that comparison is successful, another
interrupt is triggered. The ISR will add HYCLES to TC5. This will be repeated over and over.

 Process:
1. Enable Output Compare on Channel 5: TIOS(5)=1 TIOS = 0x20

2. Select OC5 action to pull to high: TCTL1(3..2)=11 TCTL1 = 0x0C

3. Set Pre-scaler factor to 8. TSCR2=0x03

4. Enable timer counter (starts from 0). Enable fast clear for TOF and C5F. TSCR1 = 0x90

5. Clear all CnF flags (just in case) TFLG1 = 0xFF

6. Start an OC5 operation with a delay of 10 cycles: TC5 = TCNT+10. This is so that we start with 0 for just 10 cycles.

7. Wait until TLFG1(5) = 1.

8. Set OC5 pin to toggle. TCTL1(3..2) = 01 TCTL1 = 0x04

9. Set new Output Compare operation with a delay of HCYCLES cycles: TC5 = TC5+HCYCLES

10. HiLoflag = 0 (Global variable)
11. Enable OC5 Interrupt:

- Local Enable for OC5: TIE(5)=1 TIE=0x20

- Global Enable: asm(“cli”)

 Interrupt Service Routine: The OC5 interrupt was enabled on Step 11. If HiLoflag = 0, then we add LCYCLES cycles to

TC5 and make HiLoflag=1. If HiLoflag=1, then we add HCYCLES cycles to TC5 and make HiLoflag=0. Note that the

addition will wraparound if it is larger than 216 − 1. Also, recall that TFLG1 is cleared every time we write on TC5.

C Code: unit9c.c

TNCT
COUNTER

Output Compare
Register n

Timer
clock

Comparator
PTn

TCn

TCNT

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

5 Instructor: Daniel Llamocca

Notes about Digital Waveform Generation:

 We will use a Timer Clock period of
1

3
𝑢𝑠 for the following results.

 The digital waveform created by the previous example has the following characteristics:

 𝐻𝐶𝑌𝐶𝐿𝐸𝑆, 𝐿𝑌𝐶𝐿𝐸𝑆 determine the duty cycle. 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝐻𝐶𝑌𝐶𝐿𝐸𝑆

𝑇𝐶𝑌𝐶𝐿𝐸𝑆
× 100%

 𝑇𝐶𝑌𝐶𝐿𝐸𝑆 = 𝐻𝐶𝑌𝐶𝐿𝐸𝑆 + 𝐿𝑌𝐶𝐿𝐸𝑆 determines the period. 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

𝑇𝐶𝑌𝐶𝐿𝐸𝑆×
1

3
𝑢𝑠

TCYCLES Frequency HCYCLES LCYCLES Duty Cycle

3000 1 KHz

300 2700 10%

600 2400 20%

1500 1500 50%

2400 600 80%

2700 300 90%

1000 3 KHz

100 900 10%

200 800 20%

500 500 50%

800 200 80%

900 100 90%

500 6 KHz

50 450 10%

100 400 20%

250 250 50%

400 100 80%

450 50 90%

300 10 KHz

30 270 10%

60 240 20%

150 150 50%

240 60 80%

270 30 90%

FORCED OUTPUT COMPARE:
 Useful if we want to immediately trigger an action on a particular Output Compare pin PTn.

 CFORC register: By writing a ‘1’ on particular bit positions, the corresponding output compare channels will be forced (the

particular PT pins will trigger an action).
 At the next Timer count after we write to CFORC, the forced channels will trigger the programmed pin actions to occur.

 The pin actions do not affect the timer flag (TFLG1) or generate an interrupt.

PPUULLSSEE AACCCCUUMMUULLAATTOORR

 It count the number of active edges (rising/falling edges) arriving on an input pin.
 HCS12D:

 Four 8-bit Pulse Accumulators (PAC3, PAC2, PAC1, PAC0), or

 Two 16-bit Pulse Accumulator (PACA=|PAC3|PAC2|, PACB=|PAC1|PAC0|)

 We can read and write on the PACn registers (n = 0, .. 3)

 Each Pulse Accumulator is assigned a particular input pin:
 PT0 PAC0, PT1 PAC1, PT2 PAC2, PT3 PAC3

 When PACA is used, PT7 is the input pin.
 When PACB is used, PT0 is the input pin.

 Interrupts:
 PT7 edge interrupt
 PACA overflow
 PACB overflow

 Operation modes:
 Even-counting (rising/falling edges)
 Gated-time accumulation mode (only for PACA).

 TCTL4: It controls the active edges selection for PAC0, PAC1, PAC2, PAC3, and PACB.

 PACTL register controls PACA operation. Bit 7 enables/disables PACA, bit 4 selects the active edge that cause the count to

increment, bit 1 enables/disables the PAOV Interrupt (PACA overflow). PAFLG: tracks PACA status (overflow flag, pin flag).
Writing ‘1’ clears this register. If PAOV Interrupt is enabled, we usually clear this register in the ISR to keep PAFLG(1) from
generating more interrupts.

 PBCTL register controls PACB operation. Bit 7 enables/disables PACB, bit 1 enables/disables the PBOV interrupt (PACB

overflow). PBFLG records status similarly to PAFLG for PACA.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

6 Instructor: Daniel Llamocca

Example: Measuring frequency on the PT7 pin. It also uses Output Compare for time reference and time delay.

 The 16-bit PACA will be used to count the number of rising edges (on PT7) in a 1 sec interval.

 The number of rising edges in a 1 sec interval will be most likely greater than 216, we keep track of the number of times

the PACA counter overflows: We use the Pulse Accumulator A Overflow (PAOV) Interrupt.
 We need a time reference to create the 1 sec interval: we use the Output Compare Channel 0. With a pre-scale factor of 8,

the Timer Clock period is
1

3
𝑢𝑠. Thus, the largest frequency we can measure is 3 MHz. With a period of

1

3
𝑢𝑠 we can create a

delay of 60000 cycles, which results in a 20 ms delay. We need 50 of these delays for the 1 sec interval.
 At the end of the 1 sec time interval, the frequency is: 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑝𝑎𝑜𝑣_𝑐𝑛𝑡 × 216 + 𝑃𝐴𝐶𝑁𝑇

 Process:

1. Enable Output Compare on Channel 0: TIOS(0)=1 TIOS = 0x01. Note that no action is set up on PT0.

2. Set Pre-scaler factor to 8. TSCR2=0x03

3. Enable timer counter (starts from 0). Enable fast clear for TOF and C0F. TSCR1 = 0x90

4. Initialize PACA count: PACN3 = PACN2 = 0x00

5. Enable PACA in event-counting mode for rising edges; enable PAOV Interrupt: PACTL=0x52.

6. Configure PT7 for input: DDRT = 0x7F (required when using the Pulse Accumulators)

7. Global Enable Interrupts: asm(“cli”)

8. oc_cnt = 50

9. Add a delay of 60000 cycles to TC0: TC0 = TCNT + 60000

10. while (oc_cnt ≠ 1) do:

wait for TLFG1=0x01
TC0 = TCNT + 60000

oc_cnt = oc_cnt – 1

11. Disable PA function: PACTL=0x00

12. Disable interrupts: asm (“sei”)

13. 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑝𝑎𝑜𝑣_𝑐𝑛𝑡 × 216 + 𝑃𝐴𝐶𝑁𝑇, 𝑃𝐴𝐶𝑁𝑇 = 𝑃𝐴𝐶𝑁3 × 0𝑥100 + 𝑃𝐴𝐶𝑁2

Interrupt Service Routine: The PAOV interrupt was enabled on Step 5. We clear the PAOVF flag and then increment the count
on paov_cnt.

C Code: unit9d.c

MMOODDUULLUUSS DDOOWWNN CCOOUUNNTTEERR

 MCCNT: 16-bit register. It counts in a downward fashion.
 It can generate an interrupt: Modulus Down Counter Underflow.
 Includes an independent clock with a pre-scaler (1,4,8,16).
 MCCTL: Controls operation:

 Bit 7: enables/disables underflow interrupt.
 Bit 6: If ‘0’, the counter counts from a value written to MCCNT it down to $0000, and stops there. If ‘1’, ‘modulus

mode’ is enabled: when the counter reaches $0000, the next count is the latest value written into MCCNT.

 Bit 3: enable bit. If ‘1’, counter enabled; if ‘0’, counter disabled and preset to $FFFF.

 Bits 1 and 0 select the pre-scaler factor.
 MCTFLG: Modulus down counter Status Register. Bit 7: Underflow interrupt

Periodic signal
(PT7)

0 2
1
6
-
1

PACA (16 bits) 0 2
1
6
-
1

0 2
1
6
-
1paov_cnt=2paov_cnt=1

20 ms

...

paov_cnt=0

2
1
6
-
1TCNT (16 bits) 0

0 2
1
6
-
1

0

...
0

2
1
6
-
1 0

2
1
6
-
1 0

2
1
6
-
10

20 ms 20 ms 20 ms 20 ms
...

1 s

P
A
C
N
T

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

7 Instructor: Daniel Llamocca

Example: Generate periodic interrupts every 10 ms
 We program a value 𝑉𝐴𝐿 on the counter so that the count from 𝑉𝐴𝐿 down to 0 amounts to a time interval of 10 ms. When

‘0’ is reached, an interrupt will be generated, and the value 𝑉𝐴𝐿 will be loaded again on the modulus down counter.

 If we use a pre-scale factor of 16, we have: 𝑇𝑖𝑚𝑒𝑟 𝑐𝑙𝑜𝑐𝑘 =
24 𝑀𝐻𝑧

16
= 1.5 𝑀ℎ𝑧 → 𝑃𝑒𝑟𝑖𝑜𝑑 = 0.67 𝑢𝑠 =

2

3
𝑢𝑠. Then, we have:

𝑉𝐴𝐿 ×
2

3
𝑢𝑠 = 10𝑚𝑠 → 𝑉𝐴𝐿 = 15000.

 Process:
1. Enable interrupt, enable ‘modulus mode’, enable counter, set pre-scale to 16. MCCTL = 0xC7;

2. Set the counter to load 15000 every time it reaches 0. MCCNT = 15000

3. Enable interrupts. asm(“cli”)

 Interrupt Service Routine: Make sure to clear bit 7 of MCFLG by writing a 1 to it.

PPUULLSSEE--WWIIDDTTHH MMOODDUULLAATTIIOONN ((PPWWMM))

 Creating a PWM signal using simple delay instructions requires frequent attention from the CPU (even if we use the Timer
Output Compare Interrupt).

 The HCS12D contains a dedicated PWM Module. It can generate PWM signals without requiring frequent attention from
the MCU.

 Eight PWM channels. Output pins: PORT P.
 Dragon12-Light Board: PP5 can be connected to the Buzzer via a Jumper.

PWM CLOCK SELECT
 E-clock: Input clock to the PWM Module.

 Each channel can select an specific clock using the PWMCLK and PWMPRCLK registers:

 Each PWM Channel (PWM7..0) is considered to be an 8-bit channel since an 8-bit counter is used to control the period and
the duty cycle.

 PWMCTL: PWM Control Register. Bits 7-4 control whether all channels are independent 8-bit PWMs or whether we

concatenate channels to create 16-bit PWMs. Bit 3 (PSWAI) enables(0)/disables(1) the PWM Module when the MCU is in
wait mode. Bit 2 (PFRZ) enables(0)/disables(1) the E-clock when the MCU is in freeze mode.
 Wait Mode: This is caused by the WAI (wait for interrupt) instruction. This instruction pushes the return address and

CPU registers on the Stack and halts CPU execution. CPU resumes when an interrupt is detected. System clocks still
work on this mode.

 Freeze Mode: This is caused by the STOP instruction. This is similar to the WAI instructions, except that the system
clocks are halted. Also, only RESET, /XIRQ, and /IRQ can resume CPU execution. The Bit S in CCR can
enable(0)/disable(1) the STOP instruction.

 The input clock (E-clock) can also be disables for the PWM Module when all PWM Channels are disabled (PWME=0x00)

/Pre-scale

Factor B

/2*PWMSCLA

E-clock

Clock A

Clock SA

Clock SB/2*PWMSCLB

Clock B

PCLK7

7 6 5 4 3 2 1 0

PCLK6 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0PWMCLK:

PWM0

C
lo

ck
 A

C
lo

ck
 S

A

01

PWM1

C
lo

ck
 A

C
lo

ck
 S

A

01

PWM2

C
lo

ck
 B

C
lo

ck
 S

B

01

PWM3

C
lo

ck
 B

C
lo

ck
 S

B

01

PWM4

C
lo

ck
 A

C
lo

ck
 S

A

01

PWM5

C
lo

ck
 A

C
lo

ck
 S

A

01

PWM6

C
lo

ck
 B

C
lo

ck
 S

B

01

PWM7

C
lo

ck
 B

C
lo

ck
 S

B

01

0

7 6 5 4 3 2 1 0

PCKB2 PCKB1 PCKB0 0 PCKA2 PCKA1 PCKA0PWMPRCLK:

/Pre-scale

Factor A

Pre-scale factor for Clock B Pre-scale factor for Clock A

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

8 Instructor: Daniel Llamocca

PWM CHANNELS:

 PWME: It enables (1)/disables(0) specific channels. This is regardless of the value of DDRP. Example: PWME=0xC0: Only

Channels 7 and 6 are enabled.
 Each channel ‘n’ (n=0..7) contains:

 An 8-bit counter: PWMCNTn

 An 8-bit period register: PWMPERn

 An 8-bit duty cycle register: PWMDTYn

 The counter runs at the rate of the selected clock source for the particular channel. Any value written to the 8-bit counter
causes the counter to reset to 0x00 and to start counting up. Usually, we write 0x00 on this counter.

 PWMPOL: Polarity of each PWM channel. If ‘0’, the PWM output starts with 0. If ‘1’, the PWM output starts with ‘1’.

 PWMCAE: PWM Center Align Enable Register. It selects between 2 types of outputs: left aligned (0) and center aligned (1).

Left-aligned output: Up counter
 When the PWM channel is activated, the value on PWMCNTn is compared to the duty cycle register value (PWMDTYn) and

the period register value (PWMPERn) at every clock cycle. A match between PWMCNTn and PWMDTYn causes the PWM

waveform to toggle. A match between PWMCNTn and PWMPERn resets the counter, toggles the PWM waveform, and the

process restarts.

 𝑃𝑊𝑀𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑃𝑊𝑀 𝑐𝑙𝑜𝑐𝑘

𝑃𝑊𝑀𝑃𝐸𝑅𝑛

 𝑃𝑊𝑀𝑛 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑃𝑊𝑀𝐷𝑇𝑌𝑛

𝑃𝑊𝑀𝑃𝐸𝑅𝑛
× 100%, 𝑖𝑓 𝑃𝑊𝑀𝑃𝑂𝐿(𝑛) = 1

 𝑃𝑊𝑀𝑛 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑃𝑊𝑀𝑃𝐸𝑅𝑛−𝑃𝑊𝑀𝐷𝑇𝑌𝑛

𝑃𝑊𝑀𝑃𝐸𝑅𝑛
× 100%, 𝑖𝑓 𝑃𝑊𝑀𝑃𝑂𝐿(𝑛) = 0

Center-aligned output: Up-down counter

 When the PWM channel is activated, the value on PWMCNTn is compared to PWMDTYn and PWMPERn at each clock cycle.

The counter is first set to count up: a match between PWMCNTn and PWMDTYn causes the PWM waveform to toggle. A

match between PWMCNTn and PWMPERn changes counter direction (down counter) and toggles the PWM waveform. When

the decrementing counter matches PMDTYN again, the PWM waveform toggles. When the decrementing counter reaches

0, the counter direction changes to an up counter again, the PWM waveform toggles, and the process restarts.

 𝑃𝑊𝑀𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑃𝑊𝑀 𝑐𝑙𝑜𝑐𝑘

2×𝑃𝑊𝑀𝑃𝐸𝑅𝑛

 𝑃𝑊𝑀𝑛 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑃𝑊𝑀𝐷𝑇𝑌𝑛

𝑃𝑊𝑀𝑃𝐸𝑅𝑛
× 100%, 𝑖𝑓 𝑃𝑊𝑀𝑃𝑂𝐿(𝑛) = 1

 𝑃𝑊𝑀𝑛 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑃𝑊𝑀𝑃𝐸𝑅𝑛−𝑃𝑊𝑀𝐷𝑇𝑌𝑛

𝑃𝑊𝑀𝑃𝐸𝑅𝑛
× 100%, 𝑖𝑓 𝑃𝑊𝑀𝑃𝑂𝐿(𝑛) = 0

PPn:

PWMDTYn

PWMPERn

PWMCNTn 0 P
W
M
D
T
Y
n

P
W
M
D
T
Y
n
+
1

P
W
M
P
E
R
n

0... ...

PWMn Channel
enabled

PPOL(n)=1

PPn:PPOL(n)=0

PPn:

PWMDTYn

PWMPERn

PWMCNTn 0 P
W
M
D
T
Y
n

P
W
M
D
T
Y
n
+
1

P
W
M
P
E
R
n

... ...

PWMn Channel
enabled

PPOL(n)=1

PPn:PPOL(n)=0

P
W
M
P
E
R
n
-
1

... P
W
M
D
T
Y
n
+
1

P
W
M
D
T
Y
n

...P
W
M
D
T
Y
n
-
1

0

PWMDTYn

PWMPERn

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

9 Instructor: Daniel Llamocca

Example: PWM5 (PP5), 60% Duty Cycle, 100 KHz, E-clock = 24 MHz

Pre-scale factor for Clock A = 2: 𝑃𝑊𝑀5 𝑐𝑙𝑜𝑐𝑘 =
24 𝑀𝐻𝑧

2
= 12𝑀𝐻𝑧 → 𝑃𝑒𝑟𝑖𝑜𝑑 =

1

12
𝑢𝑠

PWM5 desired frequency is 100 KHz PWM5 Waveform Period = 10 us

To get 10 us using a base period of 1/12 us, we need
10𝑢𝑠

1
12⁄ 𝑢𝑠

= 120 𝑐𝑦𝑐𝑙𝑒𝑠

For 60% Duty Cycle, we need 120 × 0.6 = 72 cycles:

 Select Clock A as the clock source for PWM5: PWMCLK = 0x00

 Set clock A prescaler to 2: PWMPRCLK = 0x01

 Polarity of PWM5 set to ‘1’: PWMPOL = 0x20

 Left aligned mode selected: PWMCAE = 0x00

 8-bit individual PWMs enabled, stop PWM in wait and freeze mode: PWMCTL = 0x0C

 Set period value: PWMPER5 = 120

 Set duty cycle value: PWMDTY5 = 72

 Reset PWM5 counter: PWMCNT5 = 0x00

 Enable PWM Channel 5: PWME = 0x20

DC MOTOR CONTROL:
 DC motors: Speed can be controlled by changing the voltage level to the input of the motor. We can also control the

direction of rotation by changing the polarity of the voltage applied to the motor.
 In a digitally controlled system, a voltage-controlled analog signal usually comes from a Digital-to-Analog Converter (DAC).

Instead of using a DAC, we can use PWM so the average voltage controls the motor speed.
 The HCS12 cannot supply enough current to the DC motor nor enough voltage. A driver (e.g., SN754410) is used to

supply the appropriate current. The SN754410 has 4 drivers. Each driver can supply 1A of current per channel (the HCS12
is usually in the tenths of mA), also they can provide voltage up to 36 V.

 The figure depicts how to control the speed of rotation, direction of rotation, and how to monitor the motor speed:
 Speed of rotation (PP3). This is a PWM output. The duty cycle controls the speed. If PP7=0, the higher the duty cycle,

the faster the speed.
 Direction of Rotation (PP7). This is an ordinary output. If PP7=0, then the motor runs clockwise. If PP7=1, the motor

runs counter-clockwise (here, the higher the duty cycle on PP3, the slower the speed).
 Feedback line of motor (Input Capture Pin PT0): It provides information about the speed of the motor. A sensing

device (optical encode, infrared detector, Hall-effect transistor) provides this information. The MCU can determine the
speed and position of the motor in order to make adjustments: increase/decrease speed, reverse direction, stop motor.

The example shows a particular configuration with a Hall-effect transistor and two magnets. Another typical
configuration uses three Hall-effect transistors.

 If PP7=0, we can stop the motor if the PWM signal is 0. If PP7=1, we can stop the motor if the PWM signal is 1.

 The enable signal is usually set to 1. We can also control this signal. If enable is 0, the motor stops.

 Hall-effect transistor: It is mounted on the armature of the DC motor. Two magnets are mounted on the shaft. Every time

the magnet passes by the Hall-effect transistor, a pulse is generated. These pulses are captured by the Input Capture. The
time between two captures (T/2) is half of a revolution, this allows us to calculate the speed.

 In the figure, we need the two sides of the motor in order to control direction. But if we do not want to control direction,

we can ground (or fix to power supply voltage) one of the ends of the motor. This way we avoid using a driver.

M

SN754410

3

6

enable
1

PP3

HCS12 MCU

PP7

PT0 Hall-effect transistor

T/2

Input Capture

2

7

PWM

PP7=0: Motor runs clockwise

PP7=1: Motor runs counter-clockwise

